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Hidden surface removal and non-refractive transparency rendering are 

two fundamental problems for interactive visualization. Hidden surface 

removal helps to identify the hidden primitives, bypass their rendering 

processes, so as to reduce the workload of graphics engine and provide an 

interactive frame rate. Without the distortion from refraction, non-

refractive transparency rendering gives more insight of the interior 

structure of geometric models. This research is aimed at studying these 

critical problems. 

Exact hidden surface removal is usually implemented at pixel level, such 

as z-buffering, in order to achieve the image precision. It is 

computationally power demanding. A conservative algorithm that finds a 

minimal superset of visible primitives in a short time is considered as the 

most suitable approach for interactive visualization. One significant 

technique that makes use of occlusion relation among the primitives of the 

model, and culls a significant amount of invisible primitives at different 

viewpoints quickly, is studied and devised to an occlusion culling 

algorithm. 

 



 

In this thesis, we present two algorithms to improve occlusion culling for a 

highly occluded virtual environment. The first is a novel method to select 

occluders with multiple criteria at pre-processing stage for static 

environment, using the idea of the minimum occluder set (MOS). The 

MOS of an occludee is the minimal set of primitives that occludes the 

occludee. The second is an efficient occlusion culling algorithm using the 

opacity map (OM) and sparse depth map (SDM), which are applied to the 

spatial hierarchy of the whole model at each frame at run-time. 

A common method for non-refraction transparency rendering is 

interpolated transparency. Interpolated transparency calculates the 

resultant intensity by linearly interpolating the corresponding intensities 

of two pixel fragments. The main disadvantage of interpolated 

transparency is that, when there are more than two pixel fragments, the 

graphics pipeline has to apply pair-wise interpolations in a sorted 

visibility order. However, finding visibility order at object space is a 

complex task, especially for a self-penetrating model. 

Another approach is screen door transparency. Screen door transparency 

generates a set of two dimensional masks that represents the different 

levels of opacity. The pixels of the masks have only two states, which 

determine whether they are visible or not. At higher opacity level, the 

corresponding mask contains less filled pixels. Though this technique is 

order invariant, the correctness of resultant opacities depends heavily on 

the size of mask and the distribution of pixels inside each mask. An 

improved screen door transparency rendering is presented, that applies a 

simple and fast mask generation algorithm and is feasible to be 

implemented at sub-pixel level.  

The algorithms mentioned above have been implemented and applied to 

different experimental tests and a learning toolkit for medical student 

called “Virtual Brain”. A significant speedup and a high accurate order 

invariant transparency rendering have been observed. 
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1.1 Background 
Interactive visualization is one of the major applications of computer 

graphics. 

Hidden surface removal and non-refractive transparency rendering are 

two well known fundamental problems. They are still valuable research 

topics because of fast growing data size and complexity. These demands 

mainly come from the interactive visualization of architectural model, 

scientific and medical dataset and walkthrough of outdoor scene. Hidden 

surface removal helps to identify the hidden primitives, bypass their 

rendering processes so as to reduce the workload of graphics engine, and 

provide an interactive frame rate. Non-refractive transparency rendering 

outputs a correct amount of luminance that transfers through several 

transparent objects without consideration of optical refraction. Without 

the distortion from refraction, non-refractive transparency rendering gives 

more insight of the interior structure of geometric model, such as medical 

dataset, which is important for scientific visualization and pathological 

analysis. This research is aimed at studying these two problems and 

applying two novel techniques for interactive visualization. 

Exact hidden surface removal is usually implemented at pixel level, such 

as z- buffering [2, 6], in order to achieve the image precision. It compares 

the depth value of the incoming fragment and the current one in the frame 

buffer at each pixel, and only keeps the closest one. It is computationally 

power demanding, and requires hardware implementation for interactive 

display. Another approach applies a visibility determination at primitive 

(or grouped primitives) level. At this level, an exact solution is also 

feasible, that makes use of spatial subdivision, but the overhead of 
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visibility determination is high as well [13, 27, 28, 32]. Moreover, further 

subdivision of primitives is often necessary, that increases the overhead at 

the same time. A conservative algorithm that finds a minimum superset of 

visible primitives in a short time is considered as the most suitable 

approach for interactive visualization [7, 8, 17, 21, 35, 40]. One significant 

approach that makes use of occlusion relation among the primitives of the 

model, and culls a significant amount of invisible primitives at different 

viewpoints quickly, is studied and devised to an occlusion culling 

algorithm. 

An occlusion culling algorithm consists of two processes, selection of 

occluders and occlusion culling. An occluder is a primitive among the 

whole model, which is lain before other primitives at certain view point. If 

the data or model is assumed not to be changed, it is a static model 

environment. The selection of occluders will be run at the pre-processing 

stage, therefore a computational consuming but highly effective algorithm 

is allowed. On the other hand, a simple method for selection of occluders 

will be applied for dynamic environment. In this thesis, we present the 

following algorithms for the occlusion culling: 

1. a novel method to select occluders with multiple criteria at pre-

processing stage for static environment, using the idea of the 

minimum occluder set (MOS). The MOS of an occludee is the 

minimal set of primitives that occludes the occludee. 

2. an efficient occlusion culling algorithm using the opacity map (OM) 

and sparse depth map (SDM), which are applied to the spatial 

hierarchy of the whole model at each frame at run-time. 

Though we perform occluder selection using the minimum occluder set, 

the culling part makes no assumption about the model and occluders, and 

can therefore be carried out along with occluders selected with any other 

criteria. 



Chapter 1. Introduction  3 

 

I I

A common method for non-refraction transparency is interpolated 

transparency [11]. Interpolated transparency calculates the resultant 

intensity by linearly interpolating the two corresponding intensities of 

pixel fragments. For example, let 1 and 2 be the intensities of two pixel 

fragments P1 and P2, where P1 is in front of P2 at certain view point. The 

coefficient k1, range from 0.0 to 1.0, represents the opacity value of P1. The 

combined intensity I is calculated as below. 

I = k1 I1 + ( 1 - k1 ) I2 

 

The main disadvantage of interpolated transparency is that the 

correctness only holds for two pixel fragments. When there are more than 

two pixel fragments, the graphics pipeline has to apply pair-wise 

interpolations in a sorted visibility order. However, the visibility order at 

object space is a complex computation task, and even worse for self-

penetrating model. 

Interpolated transparency is further accelerated by alpha channel and 

commonly regarded as alpha blending [30]. Since alpha blending provides 

a precise visual effect, there are several literatures [5, 20, 22, 38] to 

provide order invariant algorithm, by using A-buffer or multi-pass 

rendering. 

Another approach is screen door transparency. Screen door transparency 

[12, 26] generates a set of two dimensional masks, that represent the 

different levels of opacity. The pixels of the mask have only two states, and 

determine whether they are visible or not. At highly transparent object, 

the corresponding mask contains fewer filled pixels. Using the masks, we 

will render the transparent objects with masked rasterization. If there are 

two or more transparent objects, their masks are stacked together one by 

one with depth comparison. Therefore, some pixels will be covered, but 

some are still visible finally. If the mask size is infinite, the portions of 

visible pixels from different objects should be the same as alpha blending. 
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Though this technique does not require a visibility order, the correctness 

of opacities depends heavily on the size of the masks and the distribution 

of pixels inside each mask. Moreover, a distracting pattern will occur if 

screen door transparency is applied at pixel level. 

We give an example to show the principal of screen door transparency in 

Figure 1. We have three masks, with the alpha values of 0.5, 0.5 and 0.25 

correspondingly. We also assume that their visibility order is mask0, 

mask2 and mask1. The first row shows their individual masking pixels. We 

then stack them together according their depth order in the second row. 

The third row shows the resultant masks. We observe that the portion of 

visible pixels has the same effect as the resultant alpha blending. 
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  mask0, α0 = 0.5 mask1, α1 = 0.5 mask2, α2 = 0.25

  

  single mask 

  

  

  

  

stacking masks 
with depth 
comparison 

  

  resultant mask

  

 mask0 mask1 mask2
alpha blending 0.5 (1-α0)×(1-α2)×α1  

= 0.1875 
(1-α0)×α2 = 0.125 

No. of visible pixels / 
mask size 

8/16 = 0.5 3/16 = 0.1875 2/16 = 0.125 

Figure 1: The principal of screen door transparency. 

An improved screen door transparency rendering, that applies a simply 

and fast mask generation algorithm and is feasible to be implemented at 

sub-pixel level, is presented as another contribution of this research.  

A learning tool kit for medical student called “Virtual Brain”, that applies 

both the occlusion culling and non-refractive transparency rendering 

mentioned above will be introduced in this thesis as well. 

1.2 Difficulties 
1.2.1 Occlusion Culling 
In general, the performance of hidden surface removal has a combined 

factor of culling percentage and computation cost. An exact hidden surface 

removal has the highest culling percentage but large computational time. 
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For the purpose of interactive visualization, we apply a conservative 

occlusion culling, that means we take a trade off between the 

computational time and an acceptable culling percentage. 

The culling percentage depends on the quantity and quality of the 

occluders selected. As a single occluder rarely covers other primitives 

wholly, we usually choose a small portion of primitives grouped as an 

occluder set. For simplicity, the primitives are not in the occluder set are 

called occludees, though their roles are potential occludees indeed, since 

they will be tested against occlusion at run time. Even in a static 

environment, we need different occluder sets at different view points.  

To select more occluders, we may reach a higher culling percentage. 

However, this also increases the computation time of culling. On the other 

hand, if we only apply a small amount of occluders, the culling percentage 

may be too low, and has no significant reduction of rendering time. 

Therefore, we define the optimal set of occluders is the set of primitives 

giving the maximum ratio of its culling percentage to its computation cost. 

The general occluder selecting criteria consider four properties of a 

primitive. They are the size or projected size, first hit, redundancy and 

computation cost of the primitive. The former two criteria are typically 

used to determine good occluders. However a primitive with a large 

projected size may have low depth complexity and incomplete coverage, 

and that first-hit primitives usually form a super set of the optimal set. 

Moreover, they do not take into account the combined gain with neighbor 

occluders. These criteria only give an approximation of optimal occluder 

set, and there is a challenge to find out the minimal set of primitives that 

gives the highest culling percentage.  

The culling algorithm usually involves a lot of floating point calculations 

for an atomic operation. If an environment consists of thousands of 

primitives, the computation time is not acceptable. More considerations 
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about hierarchical data grouping and simplification of atomic operation 

are required to fulfill the narrow time slot of real time display. 

1.2.2 Non-Refractive Transparency 
The visual effect of screen door transparency depends on the size of mask, 

and the distribution of filled pixels. The size of mask limits the number of 

opacity level, and also affects the error in the case of stacking pixel masks 

for several transparent objects. The output of stacked pixel masks is also 

regarded as higher order opacity. In our approach, we apply screen door 

transparency at sub-pixel level, and we render the scene with general 

frame buffer. The size of frame buffer bounds the size of mask and output 

window. If the mask size is too large, the output window will be small, and 

vice verse. Moreover, in order to provide a direct implementation on the 

cutting edge graphics engine [25] with sixteen sub-pixel sampling, we have 

to keep the mask be reasonably small, such as sixty four pixels. 

Since the mask is small, the number of erroneous pixels becomes 

significant for higher opacity order. A systematic mask generation is 

important to compute the coverage mask with minimum error. An 

algorithm is presented in [26], which gives precise masks with minimum 

error. However, its complexity order is 2m, where m is the number of 

transparent objects. In practice, the computation time is too long for 

interactive display if we have tens of transparent objects. 

 
1.3 Contributions 
 

1. A novel method to select occluders with multiple criteria for static 

geometric data, using the idea of the minimum occluder set (MOS). 

The MOS of an occludee is the minimal set of primitives that 

occludes the occludee. 
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2. An efficient occlusion culling algorithm using the opacity map (OM) 

and sparse depth map (SDM), which are applied to spatial 

hierarchy of the whole model at run-time. 

3. A fast visibility order independent transparency rendering 

algorithm, which applies the screen-door transparency at subpixel 

level.  

4. An application called “Virtual Brain”, that supports interactive 

visualization of the surface-based data model of human organs on 

affordable PC platform and is used for computer-based anatomy and 

pathology teaching tool. 

 
1.4 Overview of This Thesis 
In this thesis, we shall briefly discuss related works of hidden surface 

removal and non-refractive transparency rendering in section 2. The 

details of occlusion culling including the minimum occluder set algorithm, 

the occlusion culling algorithm using opacity map and sparse depth map 

will be presented in sections 3. In section 4, mask generation of screen 

door transparency and its relative consideration are given. The 

experiments and applications of the algorithm mentioned above will be 

described and analyzed in section 5. The thesis concludes in section 6. 
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2.1 Hidden Surface Removal 
Hidden surface removal is a fundamental problem in computer graphics. 

The conventional z-buffer algorithm is implemented in hardware or 

software [2, 6] that yields exact visibility information by pixel-wise 

comparisons of depth values of every primitive. 

The binary space partitioning (BSP) tree algorithm [13, 28], which refines 

the work in [32], determines visible primitives in a static environment 

from an arbitrary viewpoint. After building the BSP tree, one can have a 

linear query response of visibility sorting for the whole set of primitives.  

Based on probabilistic geometry, an efficient and randomized algorithm 

for hidden surface removal is presented in [27]. Further research in 

computational geometry on randomized algorithms for maintaining a BSP 

tree for a dynamic model has been conducted [1, 36], which, however, does 

not lead to practical results. 

The potentially visible set (PVS) [21, 35] is designed for indoor 

architectural walkthrough systems. It divides the entire model into cells, 

and computes cell-to-cell visibility at the pre-processing stage. Combined 

with a view cone, one can obtain a tight bound for the visible primitives 

(eye-to-cell visibility) at run-time. 

For densely occluded scenes, hierarchical z-buffer visibility [14] is 

exploited to speedup the conventional depth value comparison during 

rasterization process. With z-pyramid, this method allows quick 

termination of depth comparison for the nodes of octree hierarchy far away 

from the viewpoint. It performs efficiently when is implemented in 

hardware. Hierarchical polygon tiling [15] combines z-pyramid to further 
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reduce the rasterization time with triage coverage masks. It traverses the 

convex polygons in front-to-back order, and culls off polygons that are 

covered in image hierarchy. 

The occlusion culling algorithm in [7, 8] computes the separating and 

supporting planes for each pair of occluders and the nodes of the model 

hierarchy. If the viewpoint is found inside the supporting frustum, then its 

corresponding node is considered as completely occluded. The algorithm 

takes the advantage that frustum is constant and needs to be computed 

only once for static models. However, it is relatively computationally 

consuming, especially with a floating point implementation. Another 

occlusion culling algorithm [17] applies shadow frusta that are extended 

from the viewpoint, and uses several large occluders as bases, and then 

culls off object nodes which are inside the frusta. This approach is limited 

with the number and the shape of occluders. Later, the same authors 

proposed a visibility culling algorithm using hierarchical occlusion maps 

(HOM) [40]. Our approach is closely related to this work. The main 

innovations of HOM are occluder fusion and efficient usage of conventional 

hardware acceleration.  

The problem of exact visibility sorting of geometric objects without the 

help of hardware z-buffer is addressed in [34]. Instead of using 

conventional 3D rendering, it produces a sequence of layered images from 

a set of geometric parts, and uses them to compose the final image. This 

approach does not demand fast 3D graphics hardware, and relies mainly 

on general computation and 2D image operations. 

2.2 Non-Refractive Transparency Rendering 
There are two major approaches for non-refractive transparency rendering, 

they are alpha blending and screen door transparency. Alpha blending [30] 

is the widely accepted method and has well supported from hardware 

alpha channel. However, it requires to blend the pixel fragments pair-wise 

in a far-to-near order. In practice, it is difficult to find the visibility order 
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in real time. Therefore, several researches extend the usage by providing 

order invariant methods. 

The A-buffer [5] is one major direction for order invariant alpha blending. 

It stores all fragments of every pixel in a depth-sorted order, and the 

resultant intensity of each pixel is simply weighted interpolation according 

to the order. Though the storage space can be saved by merging the 

fragments that come from the same primitive and overlapped in depth, it 

still has an unbounded storage requirement. An extended hardware 

architecture is proposed in [18], which requires a small fixed amount of 

storage. To limit the usage of storage, it merges the fragments that are 

very close in their depth-values. There are some more improvement issues 

in this literature, but the details will not be given here. 

Another approach is multi-pass based transparency rendering [22, 38]. 

The multi-pass based techniques only keep an opaque pixel map and a sort 

depth pixel map. The algorithm first renders all the opaque objects and 

stores their intensities and depth values into the opaque pixel map. Then, 

it renders all the transparent objects into the sort depth pixel map, and 

only keeps the fragment, that is the closest to the one in the opaque pixel 

map. The opaque pixel map now blends with the sort depth pixel map. In 

this pass, one transparent object is resolved. The operation repeats for the 

remaining transparent objects until all of them are resolved. Obviously, 

the maximum number of passes is the maximum number of transparent 

layers among any pixels. Although it provides an order invariant alpha 

blending, the rendering time of multi-pass is not suitable for interactive 

visualization. 

A hybrid method [20] keeps a buffer of constant number of image layers, 

such as four layers. It follows the approach of multi-pass based technique 

for the first four closest layers. If there are more fragments coming, the 

buffer overflows. We composite these four layers into one, and free the 

remaining three layers to find the next three closest fragments repeatedly. 



Chapter 2. Related Work 
 12 

 

The reason for multi layered buffer is based on the observation of the 

overflow happening at a low chance, and most of the common cases can be 

resolved within the number of image layers. 

Screen door transparency is not a new method, but it seems to be a 

supplementary approach in the past. Since it is closely related to the 

supersampling implementation of hardware, some issues [2, 16, 25, 31] are 

given to address it as architectural features. There is only a few pin-

pointing literatures [11, 12]. A detailed discussion of screen door 

transparency has been raised in [26]. It explores the higher order opacity 

of using different types of pixel masks adapted from digital halftoning [3, 

10, 19, 23, 24, 37], and presents a new systemic algorithm. The algorithm 

gives a set of less erroneous pixel mask, but its complexity order is 2m, 

where m is the number of masks or transparent layers. Our approach is 

aimed to reduce its complexity order, and make it be applicable to an 

interactive application.  
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In this chapter we describe the whole process of occlusion culling, 

including MOS algorithm that helps to select an effective and efficient 

occluders, and the occlusion culling algorithm which uses opacity map and 

sparse depth at run time. We first show the overview of the whole process 

of occlusion culling, and then we further explain the details of MOS and 

occlusion culling algorithms. 

3.1 Overview 
The aim of occlusion culling is to cull a significant amount of invisible 

primitives at different viewpoints in real time. To reduce the overhead, we 

first divide the entire model into hierarchical bounding volume, by 

constraining that the leave nodes of the tree contain at most 256 

primitives. Our approach makes use of occluders that are selected 

carefully in the pre-processing stage, to cull a large portion of hidden 

nodes of the hierarchical bounding volume tree at run-time. Figure 2 

shows the process flow of the rendering pipeline integrating this approach. 

 

model
database

occlusion culling
with OM

model
database

occluder
database

less than 5%
model database

final
image

hardware z-buffer
algorithm

 



Chapter 3. Occlusion Culling 
 14 

 

Figure 2: The occlusion culling algorithm using opacity map acts as a fast filter to cull a large 
portion of hidden primitives in the model database. 

At the pre-processing stage, we construct the occluder database for certain 

grid points of the whole environment, using the minimum occluder set 

algorithm. The minimum occluder set is a minimal set of primitives that 

occlude one occludee. Note that an occludee may have many different 

minimum occluder sets. We compute the minimum occluder sets only for 

the occludees with more than 20 primitives. After grouping and sorting, 

the optimal set of occluders can be found. 

At run-time, the algorithm performs the following tasks at each frame: 

1. To query the occluder database, and retrieve the occluder list from the 

grid point nearest to the current viewpoint.  

2. To render the retrieved occluders off-screen by conventional graphics 

hardware with frame and depth buffers. As we only need the image 

bitmap and depth value of the occluders, this rendering process is 

optimized by ignoring light and material setting. The resolution 

applied can be lower than the final display.  

3. The resulting buffer contents are used to construct the opacity map and 

sparse depth map, respectively.  

4. Using the opacity map and sparse depth map, we test for occlusion 

recursively with the node’s projected image. The occlusion culling 

consists of two dimensional overlap tests and depth comparisons. The 

two dimensional overlap test is enhanced by using only three integer 

additions or subtractions, while the depth comparison is carried out 

sparsely.  

5. Finally, the nodes not culled in the occlusion culling step are regarded 

as conservatively visible and fed into the hardware z-buffer algorithm 

for exact visibility determination. 
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3.2 Minimum Occluder Set Algorithm 3.2 Minimum Occluder Set Algorithm 
As mentioned before, a single occluder selection criterion, such as the size 

or projected size, first-hit, redundancy or computation cost, has its own 

weakness and does not consider the combined gain of culling percentage 

with neighbor occluders. We define the optimal set of occluders to be the 

set of primitives giving the maximum ratio of its culling percentage to its 

computation cost. These criteria fail to give the combined culling 

percentage of the whole set of occluders, and only provide a rough 

approximation. In contrast, our scheme tries to find the minimum set of 

primitives that occludes an occludee, as shown in Figure 3. It chooses a set 

of primitives at one time, instead of picking only one primitive. Therefore 

it leads to more efficient elimination than those occluders only yield 

incomplete coverage. With a suitable scoring scheme, we can find the 

optimal set of occluders at a given viewpoint. The MOS algorithm has 

three major components: construction of occluder stack, generation of 

MOS for each occludee, and calculation of the score for each MOS. We pick 

the MOS with the highest score, and keep checking on redundancy. 

As mentioned before, a single occluder selection criterion, such as the size 

or projected size, first-hit, redundancy or computation cost, has its own 

weakness and does not consider the combined gain of culling percentage 

with neighbor occluders. We define the optimal set of occluders to be the 

set of primitives giving the maximum ratio of its culling percentage to its 

computation cost. These criteria fail to give the combined culling 

percentage of the whole set of occluders, and only provide a rough 

approximation. In contrast, our scheme tries to find the minimum set of 

primitives that occludes an occludee, as shown in Figure 3. It chooses a set 

of primitives at one time, instead of picking only one primitive. Therefore 

it leads to more efficient elimination than those occluders only yield 

incomplete coverage. With a suitable scoring scheme, we can find the 

optimal set of occluders at a given viewpoint. The MOS algorithm has 

three major components: construction of occluder stack, generation of 

MOS for each occludee, and calculation of the score for each MOS. We pick 

the MOS with the highest score, and keep checking on redundancy. 
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Figure 3: The idea of MOS. The primitives and their labels are shown in the box above. The 
shaded rectangle is the image of an occludee. The left and middle figures show two MOS 
(ABC and ACD) of the same occludee, while the one on right shows the wrong selection for 
MOS, as either B or D is redundant. 

Figure 3: The idea of MOS. The primitives and their labels are shown in the box above. The 
shaded rectangle is the image of an occludee. The left and middle figures show two MOS 
(ABC and ACD) of the same occludee, while the one on right shows the wrong selection for 
MOS, as either B or D is redundant. 

3.2.1 Construction of Occluder Stack 3.2.1 Construction of Occluder Stack 
For each occludee, an occluder stack is constructed to generate MOS for 

each occludee. It is a three dimensional array, with the rectangular base of 

the same size as the bounding box of the projected image of the occludee in 

For each occludee, an occluder stack is constructed to generate MOS for 

each occludee. It is a three dimensional array, with the rectangular base of 

the same size as the bounding box of the projected image of the occludee in 
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the screen space. After depth sorting, if a primitive is in front of the 

occludee and covers some pixels of the occludee’s projected image, the 

identifier of the primitive is pushed into the stack at the location of the 

covered pixels, as shown in Figure 4. With hardware graphics pipeline, the 

projected image of occludees and primitives can be found quickly. 

Ideally, we would like to construct the occluder stack for all occludees. But 

it may need too much memory and time. In order to make it practical, the 

algorithm filters out the less significant occluders and occludees, such as 

tiny objects containing only few primitives. 
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the occludee is completely covered by the current MOS, which will be 

stored into MOS database. Thus, finding one MOS of an occludee is 

equivalent to finding one combination of primitives that cancel all the 

slots - the whole combination table. Moreover, there may be many 

different combinations of primitives that covered all the slots as well. 

Therefore, in order to find all MOSs of an occludee, an exhaustive search 

is carried out, for all the combination of primitives inside the table.  

We run through the table from left to right, as it usually gives early 

termination. We simply pick the IDs of the first column’s slots as 

intermediate MOS, and cancel the associated slots. Then we concatenate 

the first IDs of the first remaining slot, and cancel the corresponding slots 

repeatedly. If the whole table is cancelled, we save this intermediate MOS 

in MOS database. Afterwards, we backtrack to the last concatenated ID’s 

slot, remove the last ID from the intermediate MOS, recover the slots it 

cancelled, and try the next allowable ID in the same slot, and cancel the 

corresponding slots repeatedly, until we get another MOS. If there is no 

next allowable ID in the same slot, we backtrack further to the previous 

concatenated ID’s slot, one step at a time, until we find all the MOSs. 

According to Figure 4, we first collect A and C as intermediate MOS. Then, 

only the third slot (BD) of the second column remains. Hence, the MOSs of 

this example are ABC and ACD. 

An upper bound on the complexity of an exhaustive search is O(n!), where 

n is the number of different primitives of the table. Though it is executed 

at pre-processing stage, shorter computation time is preferred. In practice, 

we usually do not need to compute all MOSs of each occludee; only the 

cheapest (in cost) portion of MOSs for each occludee will be kept. A 

pruning technique is applied to shorten the exhaustive search. If we find 

that the intermediate MOS already has higher cost compared with the 

ones inside the MOS database, we backtrack immediately. This leads to a 

quicker termination, and is a trade off for efficiency. 
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3.2.3 Scoring and Selecting 
 
Each MOS has its gain and cost. The gain is the number of occludees it 

occludes, and the cost is the computation time for processing the MOS 

during occlusion culling at run-time. The gain is found by grouping the 

identical MOSs of all occludees together. If an MOS S1 is the superset of 

MOS S2, the algorithm adds the gain of S2 to S1. This approach explores 

the effectiveness of occlusion fusion. The cost of MOS is usually the 

rendering cost, as the occlusion culling will render all the selected 

occluders at each frame at run-time. This value is approximated by the 

number and the total projected sizes of occluders that the MOS contains. 

The number of occluders increases geometric computation, while their 

projected image sizes affect the rasterization time. Combining the gain, 

cost and user preferences, the algorithm assigns a score to each MOS. 

After sorting, the algorithm collects the top portion of MOSs up to a user 

defined limit. In order to remove redundant occluders that are contained 

in more than one MOS, or even hidden by occluders with higher scores, 

the algorithm makes use of ID rendering, that is, to render the occluders 

into the frame buffer with their IDs for rasterization, instead of their 

colors. With ID rendering, the redundant or hidden occluders will not be 

found in the ID buffer. The algorithm overlays the ID rendering of each 

MOS to the previous ID buffer, and repeats until the number of selected 

occluders reaches the limit. The final set of optimal occluders for the whole 

scene from a fixed viewpoint is then extracted from the ID buffer. This 

process of selecting MOS is essentially repeated for all representative 

viewpoints in different directions. 

 
3.3 Occlusion Culling 
The occlusion culling consists of three parts. They are view frustum 

culling, overlap test with opacity map, and depth comparison with sparse 
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depth map. The view frustum culling is the typical algorithm to be applied 

on the hierarchical bounding volume tree at first. It culls the nodes falling 

outside the view frustum, but not those hidden by occluders. In our 

occlusion culling algorithm an occludee is occluded if (a) the projected 

image is completely covered by occluders’ image; and (b) the nearest depth 

value of occludee is farther than the depth values of occluders. The overlap 

test and depth comparison are applied to check these two conditions. If a 

node passes through both testes, it is hidden by the selected occluders; 

otherwise, the occlusion culling continues for its children recursively.  

The straight forward solution to the overlap test and depth comparison is 

by a pixel-wise test. But its computation cost is prohibitive for interactive 

display. In contrast, the opacity map needs only two integer additions and 

one subtraction to do the overlap test. The sparse depth map further 

simplifies depth comparison. In this section, the opacity map and sparse 

depth map, as well as their uses and features are described.  

3.3.1 Opacity Map 
The opacity map is a two dimensional array of the down scaled size of the 

final image, and stores the opacity values at each pixel. The opacity value 

of a pixel is the number of pixels, being covered by occluders and lying 

inside the rectangular area from lower left corner up to the pixel. In 

Figure 5, pre-selected occluders are rendered off-screen to produce the 

bitmap of the occluders’ image. The bitmap is generated in the back buffer 

by graphics hardware. A 1 in the bitmap indicates that the pixel is covered 

by occluders, with 0 indicating not. The opacity value of the black box in 

Figure 5c is equal to the number of 1’s in the black bordered region in 

Figure 5b. The algorithm uses scan-line conversion to calculate the opacity 

values at each pixel. A row and a column of zeros are added to eliminate 

the boundary cases during overlap test. For simplicity, we do not show 

them in the figure. As these zeros do not need to be updated, they are 
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ignored at the construction phase of the opacity map. The resolution of the 

opacity map used for the model tested in this paper is 128×128, excluding 

the first row and column of zeros, while the displayed image resolution for 

the final images are 512×512 or 1024×1024. We feel that this is a good 

balance between the accuracy and computation time. 

 

 

 
(c)(a) (b)  

Figure 5: (a) The back buffer for rendering the occluders. The grey area is covered by 
occluders. (b) The bitmap of the occluders. (c) The opacity map, and the shading showing the 
usage of opacity function. 
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3.3.2 Overlap Test 
The aim of the overlap test is to check whether the rectangular area of the 

projected image of an occludee is completely covered by occluders’ images. 

In other words, it checks if the area of occludee’s image is fully filled by 1s 

in the bitmap. With the opacity map, this query can be done by opacity 
function (OPF),  

OPF(x1, x2, y1, y2 ) =  
Op(x1,y1) - Op(x1,y2) - Op(x2,y1) + Op(x2,y2) 
 

where Op(s, t) means the opacity value at co-ordinates (s, t) in the opacity 

map, while the lower left corner of the opacity map has the co-ordinates (1, 

1). The OPF calculates the number of 1’s in the rectangular region 

(x1<x<=x2, y1<y<=y2) of the bitmap. Figure 5c shows the application of 

OPF to do overlap test for one occludee. The dash lines border the 

rectangular region  (2<x<=5, 1<y<=5), which is the occludee’s projected 

image. The region has 12 pixels in total.  

Then, we calculate, 

OPF(2, 5, 1, 5)  
= Op(2, 1) – Op(2, 5) – Op(5, 1) + Op(5, 5) 
= 2 – 9 – 5 + 18 
= 6 
 

It means that the occluders cover only 6 pixels inside this region. 

Compared with the region size (12 pixels), the occludee is not occluded by 

the occluders and therefore fails the overlap test.  

The projected image of the occludee can be obtained by either using the 

three-dimensional bounding box or the convex hull of the occludee, as a 

simplified representative. The computation cost of projected image of 

three-dimensional bounding box is much cheaper. However, in the case of 

rounded-shape model, the void space of bounding box is too large that an 

overlap test often fails. Therefore, we adapt the Quick Hull algorithm [4] 

to find the convex hull of the occludee at the pre-processing stage, and use 
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its projected image for overlap test. This trade off can be adjusted 

according to the model.  

Besides the benefit of occluder fusion, the opacity map allows the overlap 

test of one occludee to be done with only two additions and one subtraction. 

Moreover, two more modifications can be made to perform approximate 

overlap tests and adaptive overlap tests. 

Approximate Overlap Test: For a highly dense scene composed of many 

tiny primitives, such as a bottle full of small stones, a certain tolerance 

can be added to the opacity function. This makes the overlap test ignore 

some holes of the occluders’ image, and regard the almost entirely hidden 

nodes being occluded. Using the opacity map, this modification is easy to 

achieve. 

Adaptive Overlap Test: In order to balance the computation time of the 

occlusion culling and rendering process, a coverage ratio threshold is used 

to trigger a stop signal to the recursive occlusion culling algorithm. The 

coverage ratio is the ratio of result of the opacity function of one occludee 

to its rectangular image size. If the occludee has a coverage ratio less than 

0.2, the algorithm stops testing its descendants, as in this case the 

occluders cover too little area of the occludee and have low chance to 

completely cover the occludee’s descendants. Consequently, those 

descendants are regarded as conservatively visible. The threshold will be 

adjusted according to the culling time, and prohibits extra occlusion 

culling in the case where the rendering capacity is much larger than the 

number of primitives falling in the view frustum.  

3.3.3 Sparse Depth Map 
The sparse depth map is an auxiliary data structure of the depth map, 

which is generated at the same phase of off-screen rendering. The depth 

map is a two dimensional array recording the depth values (nearest) of the 

occluders. In a general approach, the depth comparison is carried out for 
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every pixel the occludee covers. But there is depth coherence in the same 

row, especially in the case of the same occluder. In a row, the depth value 

varies in three modes, near-to-far, far-to-near or still; and this can be 

plotted as a line segment chart, where the line segment increases, 

decreases or keeps flat. With the chart, we locate the local peaks, which 

has the largest depth values locally, as shown in the Figure 6. The 

algorithm now only seeks the local peaks of the occluders, instead of every 

pixel. The sparse depth map is constructed to store the number of pixels 

apart from the nearest local peak to the right. 

To construct the sparse depth map, the algorithm transverses the depth 

map from the upper right corner to the bottom left, row by row. An integer 

variable step is used to record the number of pixels that can be skipped. 

Ignoring the border case, it tests two consecutive (named current and last) 
pixels. If they are increasing or keeping still, the algorithm adds one to the 

step variable and saves it into current pixel of sparse depth map. 

Otherwise, if the previous test shows increasing and keeping still, the 

current pixel is the peak. It stores step plus one into the peak pixel of the 

sparse depth map, and then resets the step to one. 

To reduce the construction time of the sparse depth map, the algorithm 

does not compute the row of pixels that are covered by no occluders, 

because those rows will not be used for the depth comparison. As the 

sparse depth map exploits pixel coherence, if the depth map varies from 

near-to-far and far-to-near alternatively each pixel, the sparse depth map 

will contain all 1s. This means there is no pixel that can be skipped, and 

the algorithm will test every pixel as the usual depth comparison. In this 

case, the sparse depth map should be disabled, in order to save the 

construction time. The resolutions of depth map and sparse depth map 

used in our tests are the same as the opacity map, i.e. 128×128. 
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view 

direction  

Figure 6: One row segment of the sparse depth map. It is the top view of an occludee (the 
grey rectangular box), and some occluders (the black lines). The two black dots mark the 
local farthest pixels (with the locally largest depth values) of this segment, called the peaks. 

3.3.4 Depth Comparison 
 
The depth comparison uses both the depth map and sparse depth map. For 

an occludee, the algorithm finds the nearest depth value of its bounding 

volume. This simplifies the depth comparison, and also guarantees the 

correctness of the culling algorithm. The depth comparison is applied to 

the projected area of the occludee. It tests the depth from the bottom row 

to the top of the rectangular area. For one row, it first tests the depth 

value of the leftmost pixel. If the nearest depth value of the occludee is 

larger than the pixel value of the depth map, it will test the next-jump 

pixel indicated in the sparse depth map. Otherwise, the occludee is in 

front of the occluder and the depth test fails and terminates. 

We have gone through the part of Occlusion Culling, and now proceed to 

the part of Non-Refractive Transparency Rendering. Later, the 

experimental results and application performances will be given for both 

parts. 
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In this chapter, we describe the overall procedure for applying screen door 

transparency at sub-pixel level. Afterwards, we study a precise mask 

generation, called pixel tree mask method. Since the pixel mask affects the 

accuracy of resultant opacity, and it is regarded as a core part of screen 

door transparency. We also present a new mask generation method, called 

tabular pixel mask, that considers the pixel distribution with other depth 

neighbors. We would show their computational complexity and accuracy in 

the later part. 

4.1 Overview 
To recall the basic of screen door transparency, it generates a set of two 

dimensional masks that represent the different levels of opacity. The 

pixels of the mask have only two states, which determine whether they are 

visible or not. A highly transparent object, the corresponding mask 

contains fewer filled pixels. Using the masks, we will render the 

transparent objects with masked rasterization. If there are two or more 

transparent objects, we stack their masks together one by one with depth 

comparison. Therefore, some pixels will be covered, but some are still 

visible finally. If the mask size is infinite, the portions of visible pixels 

from different objects should be the same as alpha blending. In fact, the 

pixels within the mask are sub-pixels of the whole frame buffer; however, 

because we focus on the mask generation, we simply call them “pixels”, 

which are used in previous literatures.  

To apply screen door transparency at the sub-pixel level, basically, we use 

a larger conventional frame buffer with magnification equals to the size of 

pixel mask. We first render all opaque objects. Afterwards, We generate a 

pixel mask for a transparent object, which is filled with the number of 
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pixel as the same portion as its alpha value. Using a stencil buffer, we 

render the transparent object with the masked rasterization. We repeat to 

render all the remaining transparent objects. At last, we re-sample the 

image back to its original size. Figure 7 shows the process flow of screen 

door transparency rendering. 

If the hardware capability is allowed, we can simply apply the pixel mask 

into sub-pixel buffer. In our case, the platform is aimed for PC compatible; 

we have to use the alternative as mentioned above, with some loss of 

performance. However, it does not affect our later analysis. In our 

implementation, we use 8×8 mask size for a practical application, and 

16×16 and 32×32 for experimental tests. In the practical application, we 

provide a 96×96 region for screen door transparency rendering, as it is 

limited by the size of hardware frame buffer. 

The performance of screen door transparency depends on the accuracy of 

higher order opacity obtained from the stacked masks, which requires a 

careful computation of pixel distribution among the masks. Therefore, our 

research is focused on the precise mask generation for a small mask and 

tens of transparent objects. 

rendering opaque
objects

rendering
transparency with

masked
rasterization

magnify shrink

 

Figure 7: The process flow of screen door transparency rendering. An enlarged frame buffer 
is used, and all opaque objects are rendered first. Then, transparent objects are rendered 
with masked rasterization. Finally, the frame buffer is shrunk back to its original size for visual 
output. 
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4.2 Precise Mask Generation 
The major advantage of screen door transparency is order invariant. The 

accuracy depends on the sizes of mask and the filled pixel distribution. 

Usually, white noise mask is suggested for mask generation, but it does 

not guarantee the accuracy, and acts as a rough approximation instead. To 

find a set of precise masks of different opacities, besides an exhaustive 

search of all possible masks, there is a binary tree approach, called pixel 

tree mask [26]. We base on the idea of binary tree partitioning of mask, 

further furnish for the situation of 8×8 mask size and tens of transparent 

objects, with a comparable computational complexity.  

4.2.1 Binary Tree Approach – Pixel Tree Mask 
In [26], a precise mask generation, called pixel tree mask method, is 

presented. The algorithm makes use of a binary tree structure to partition 

the mask into sub-regions hierarchically, so that the overlapped portion of 

any two masks should be the product of their alpha values. This is an 

important behavior for the correctness of higher opacities. To illustrate the 

idea, we give an example in Figure 8. Suppose there are three transparent 

primitives p0, p1 and p2, with alpha values 0.5, 0.25, and 0.5 respectively. 

The rendering order is p0, p1 and p2, while their depth order is also p0, p1 

and p2, and p0 is the nearest. For the pixel tree mask, since we will binary 

partition the masks into sub-regions hierarchically, similar to building a 

binary tree structure, we define  be the mask region where it is ith node 

at jth level of the tree. The root of the tree is the whole mask . We now 

generate the first mask by binary partition the whole mask  into two 

sub-regions  and .  is the region of zero (empty) and  is the region 

of one (filled). The size of region of one is equal to the product of its alpha 

value and the number of pixels of the parent node. Then, we generate the 

second mask, by further partitioning  and  into , ,  and  
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respectively. The process continues similarly for the remaining primitives, 

and is shown in Figure 8. 
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alpha values and mask size together. In Figure 9, we can see that the 

white noise masks give one or more faulty pixels at the second and higher 

opacities, while the pixel tree masks do not.  

alpha values and mask size together. In Figure 9, we can see that the 

white noise masks give one or more faulty pixels at the second and higher 

opacities, while the pixel tree masks do not.  

Obviously, it is because the pixel tree mask method distributes the filled 

pixels with careful consideration. As the mask is small, the error of the 

white noise masks is significant. On the other hand, if the mask size is 

infinite, we can achieve the exact solution as well. Of course, it is not 

practical for infinite mask size, or even 32×32 mask size. 
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The mask size is discrete, so it introduces a quantization error from 

mapping a continuous alpha value to a discrete number of filled pixels. 

Moreover, the pixel tree mask has another source of error. When the tree 

grows, the sub-regions at the leave nodes become smaller; they may have a 

few of pixels, such as one or two pixels only. These sub-regions cannot 

afford further partitioning. We have to “round off” the number of pixels 

within these sub-regions, and compensate the “round off” from their peer 

sub-regions. This gives an intra-quantization error. In order to solve the 

intra-quantization error, we try to sequence the splitting order of leave 

nodes in a randomized manner, so that hopefully, the intra-quantization 

error will not be accumulated into a single branch of tree vertically. Mostly, 

the intra-quantization error should be settled with a proper randomized 

splitting sequence. However, if we share the intra-quantization error from 

the peer nodes randomly, we have chance for putting some pixels from the 

region of one to the region of zero, not at the leave level, but at the 

ancestor level. It still violates the binary partition with its ancestors. In 

Figure 10, we have three masks, s1, 2 and 3. They have alpha values of 

0.5, 0.25 and 0.25 respectively. For simplicity, we split the nodes in the 

order as the same as their indexes. There is no intra-quantization error at 

the first two masks. At the third mask, a 0.5 pixel error is borrowed from 

 and  to  and  correspondingly. It violates the binary partition of 3
3s 7

3s 1
3s 5

3s

2, as it takes one pixel form the region of one to the region of zero. 

Sometimes, if the tree has sixteen levels, the new mask may violate its 

ancestors up to ten higher levels. 
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4.2.4 Feasibility 
The pixel tree mask method gives a precise stacked mask output, however, 

the computational complexity and the limited number of transparent 

objects make it improper for an interactive application. In order to give a 

practical usage of screen door transparency, the algorithm should use a 

small mask, have a low computational complexity, allow an unlimited 

number of transparent objects and give a precise stacked mask output. 

4.3 Tabular Pixel Mask Generation 
To achieve the requirement of practical screen door transparency, we 

propose a tabular pixel mask generation, that is based on the pixel tree 

mask generation. The tabular pixel mask generation is pin pointing to the 

case of small mask (8×8) and many transparent objects ( ≥6 ). In this 

situation, the first target is to reduce the storage requirement and 

computational complexity. As if the binary tree of pixel tree mask (8×8) 

has more than six levels, some null nodes appear. Moreover, when the tree 

grows to sixteen levels, there are at least 65472 ( 216 – 64 ) null nodes. It 

implies an excess storage need and redundant computational overhead. 

The second aim is to minimize the occurrence of violation when there are 

more than six transparent objects. This requires a novel method for 

sequencing the order of splitting sub-regions. In this section, we describe 

the details of tabular pixel mask generation, including: structure of mask 

table, the process of mask generation and the method of sequencing the 

splitting order.  

4.3.1 Structure of Mask Table 
The structure of mask table is simple; it has a number of row entries, two 

row indexes and an accumulated error. A row entry is similar to a node of 

binary tree structure of the pixel tree mask, and represents a sub-region of 

the whole mask. It includes a list of pixels that are inside this sub-region, 

a count of the pixels and a boolean value that indicates whether this sub-

region is filled or not. We refer the row entry with a filled region as filled 



Chapter 4. Non-Refractive Transparency Rendering n-Refractive Transparency Rendering  35 

r

 35 

r

row entry, and another is empty row entry in contract. Every row entry 

has at least a pixel, which is the main difference comparing with the 

content of a node of pixel tree mask. The two row indexes, named sta t 
and end, point to the first and the last previous spawned row entries. The 

accumulated error is a floating point variable, that is used for mask 

generation. 
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accumulated error is a floating point variable, that is used for mask 

generation. 

The structure of a mask table is shown in Figure 11. The structure of a mask table is shown in Figure 11. 
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Figure 11: Structure of mask table.Figure 11: Structure of mask table.
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entries have zero pixel count, this row entry is abandoned, and the next 

new row entry is inserted here instead. After these row entries are 

processed, the start and end row indexes are updated to surround these 

new row entries. 

entries have zero pixel count, this row entry is abandoned, and the next 

new row entry is inserted here instead. After these row entries are 

processed, the start and end row indexes are updated to surround these 

new row entries. 

As mentioned before, partitioning a sub-region introduces an intra-

quantization error at the later stage. It is because the new row entry takes 

a rounded number of pixels from the parent. In order to compensate this 

error, we use a variable for accumulating the error. At each new mask is 

going to be generated, we set the accumulated error to zero. Then, every 

new row entries take the original rounded amount plus the accumulated 

error for splitting. Afterwards, the rounded-off amount is further set to the 

accumulated error for the next row entry. 

As mentioned before, partitioning a sub-region introduces an intra-

quantization error at the later stage. It is because the new row entry takes 

a rounded number of pixels from the parent. In order to compensate this 

error, we use a variable for accumulating the error. At each new mask is 

going to be generated, we set the accumulated error to zero. Then, every 

new row entries take the original rounded amount plus the accumulated 

error for splitting. Afterwards, the rounded-off amount is further set to the 

accumulated error for the next row entry. 

An example is shown in Figure 12. The table has only one row entry as 

mask0 initially. We assume the mask has eight pixels. The alpha value of 

mask1 is 0.5, so the list of pixel from mask0 is simply divided into two rows 

without an accumulated error. The start1 and end1 row indexes are 

updated to start2 and end2 row indexes respectively. The alpha value of 

mask2 is 0.125. When splitting the first row entry from mask1, we have an 

accumulated error –0.5 ( i.e. 4 ×  0.125 – 1 ). Then, we set the number of 

pixels of the second row entry to 3.5 ( the original number of pixels plus 

the accumulated error ), therefore, this new row entry has 0 pixel ( i.e.  3.5 
× 0.125 ), and will be abandoned. The remaining 4 pixels are added to the 

next empty row entry. The generation of mask2 is completed. 
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of splitting orders becomes shorter. It means that the new mask may have 

violation to these low priority object masks inevitably at last. 

of splitting orders becomes shorter. It means that the new mask may have 

violation to these low priority object masks inevitably at last. 

Now, we would give an algorithmic description and an example. We first 

define RFj & REj be the filled and empty row entries for the jth objects, 

where j is the index of the mask table; in this case, j is also the rendering 

order. Both RFj and REj contain the list of pixels, which represent their 

mask coverage regions, but without the ordering among these pixels. Then, 

we define Fi and Ei be the partial pixel list of splitting order of the new 

mask, with considering for the object up to the ith priority, or simply 

depth value in this case. It means that F0 is the pixel list of splitting order, 

sharing intra-quantization error within the region of one of the 0th 

priority object. In addition, F1 is the partial pixel list of splitting order, 

which shares intra-quantization error among the regions of one of both the 

0th and 1th priority object. In fact, Fm-1 is the intersection of RF from 0th 

to (m-1)th priority.. The definition of Ei is similar. Therefore, when we add 

a new mask, we find out these Fm and Em to the certain priorities, say 6. 

Afterwards, we collect the pixels from Fm to F0, with discarding the 

duplicated ones, which is the final splitting order for this new mask. We 

apply the same procedure to Em to E0 as well. 

Now, we would give an algorithmic description and an example. We first 

define RFj & REj be the filled and empty row entries for the jth objects, 

where j is the index of the mask table; in this case, j is also the rendering 

order. Both RFj and REj contain the list of pixels, which represent their 
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which shares intra-quantization error among the regions of one of both the 

0th and 1th priority object. In fact, Fm-1 is the intersection of RF from 0th 

to (m-1)th priority.. The definition of Ei is similar. Therefore, when we add 

a new mask, we find out these Fm and Em to the certain priorities, say 6. 

Afterwards, we collect the pixels from Fm to F0, with discarding the 

duplicated ones, which is the final splitting order for this new mask. We 

apply the same procedure to Em to E0 as well. 
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Figure 13: An example of neighborhood error compensation. Figure 13: An example of neighborhood error compensation. 
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In Figure 13, we assume that there is no abandoned row entry while 

splitting the mask0~4 for simplicity.  The indexes of row entries are shown 

in mask4. We keep track of three nearest objects, and in this case they are 

mask2, mask1 and mask4 in the descending order of their depth. We find 

RF2, RF1, RF4 and RE2, RE1, RE4  shown in Table 1. Initially, F0 is equal to 

RF2, containing { 4, 5, 6, 7, 12, 13, 14, 15 }. To consider the second priority 

as well, we calculate the intersection of RF2 and RF1, that is { 12, 13, 14, 
15 }, which is stored in F1. For the third priority, F2 is the intersection of 

RF2, RF1 and RF4 or { 13, 15 }. The generation of E0~2 are similar and the 

resultant F0~2 ad E0~2 are shown below. Finally, the splitting order of the 

new mask is { 13, 15, 12, 14, 4, 5, 6, 7, 0, 2, 1, 3, 8, 9, 10, 11 }. 

filled row entry list of pixels empty row entry list of pixels 
RF2 4,5,6,7,12,13,14,15 RE2 0,1,2,3,8,9,10,11 
RF1 8,9,10,11,12,13,14,15 RE1 0,1,2,3,4,5,6,7 
RF4 1,3,5,7,9,11,13,15 RE4 0,2,4,6,8,10,12,14 
 

splitting order for 
filled row entry 

list of pixels splitting order for 
empty row entry 

list of pixels 

F0 4,5,6,7,12,13,14,15 E0 0,1,2,3,8,9,10,11 
F1 12,13,14,15 E1 0,1,2,3 
F2 13,15 E2 0,2 

Table 1: Lists of pixels for filled and empty row entries and their corresponding splitting 
orders. 

4.3.4 Computational Complexity 
Assume we use a mask of size n, and there are m transparent objects. For 

the mth mask generation, if 2m ≤ n, the computational complexity is O(2m); 
otherwise, it is O(n). For the computational complexity of generation of m 

masks, if 2m ≤ n, it is O(2m+1-1), else it is O( n*(m – log2 n + 2) -1 ) or 

simply O(m*n).  

To compare the computational complexities of pixel tree mask and tabular 

pixel mask method, we assume that there are m transparent objects, and 

each mask has size n again. Then we count for the total numbers of atomic 

operations for generating m masks of the two methods. We define the 
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atomic operations of pixel tree and tabular pixel mask methods to be the 

splitting of nodes and row entries respectively. We calculate the 

theoretical computation complexity for four different cases and the result 

is shown in Table 2. We clarify that, since the actual computational times 

of atomic operations are different, therefore, the figures in Table 2 can 

only be used as supplementary reference. 

In the case 2 and 4, we observe that the pixel tree and tabular pixel mask 

generation have the same computational complexity. It is because in these 

cases the number of transparent objects is still within the capacity of the 

mask size. In the test case 1 and 3, the number of transparent objects 

exceeds the capacity of mask size, there are many null nodes produced for 

the pixel tree mask generation, and thus causes a large redundant 

overhead, while the tabular pixel mask method does not.  

 Pixel tree mask Tabular pixel mask 
Computational 
complexity 

2m+1 – 1 If n ≤ 2m, => 2m+1 - 1; 
else => n × ( m – log2 n + 2) –1 

1) n = 1024, m = 24 33554431 16383
2) n = 1024, m = 10 2047 2047
3) n = 64, m = 16 131071 767
4) n = 64, m = 6 127 127
 
Table 2: Computational complexities of white noise, pixel tree and tabular pixel mask 
generations. 

With the same assumption as above, and also let R be the size of frame 

buffer. The computational complexities of applying masks are, O(m) for 

geometric calculation, O( R*n ) for rasterization, and O( R*n ) for depth 

comparison. However, if hardware sub-pixel buffer is big enough, we can 

ideally achieve O(R) for time complexity of rasterization though we have 

O( R*n ) for space complexity. 

The main bottleneck of the tabular pixel mask algorithm is the part of 

mask generation, which has computational complexity of O( m*n ), if we 

generate all the masks again and again at each pixel. However, we usually 

apply this method as a fast approximation of rendering a lot of 
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transparent objects. Thus, we accept a trade off between the visual 

accuracy and time complexity. In order to reduce the time complexity, we 

only re-generate the masks for the divided regions of the whole frame 

buffer, instead of generating all the masks again at each pixel. It is 

because Neighborhood Error Compensation does not require a full depth 

sorting, only require to know which certain number of objects are the 

nearest, and they are not sorted at all even. This property is able to afford 

a few depth changes of objects within the divided region, without any 

noticeable error. The mask generation scheme may depend on the number 

of transparent objects and the mask size. 

Now, we compare the overall complexity of tabular pixel mask generation 

with the conventional A-buffer method [5], which has time complexity of 

O( R*m*log2 m ) and space complexity of O( R*m ). If we carry out the 

pixel mask generation per pixel, we have a time complexity of O( R*m*n ) 
and space complexity of O( R*n ). Assume n is smaller than m, pixel mask 

generation will use less space than A-buffer method, but the time 

complexity of pixel mask generation will be far behind. For example, if we 

use an 8×8 mask, n is 64, the pixel mask generation will be faster only 

when m > 264. However, if we allow generating the pixel masks for the 

divided regions sized of DR, then, pixel mask generation will have a 

reduced time complexity of O( R/DR*m*n ). In this case, the pixel mask 

generation will be faster when m > 2n/DR. So if we use an 8×8 mask again, 

and assume DR is a 4×4 region, then, the pixel mask generation will be 

faster when m > 24. This performance is more practical. The Table 3 shows 

the computational complexity comparison. 
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 A-buffer algorithm Tabular pixel mask 
generation (pixel) 

Tabular pixel mask 
generation (divided 
region) 

Time complexity O( R*m*log2 m ) O( R*m*n ) O( R/DR*m*n ) 
Space complexity O( R*m ) O( R*n ) O( R*n ) 

Table 3: Comparison of computational complexities of the A-buffer algorithm and tabular pixel 
mask generation for pixel and divided region. R stands for the frame buffer size, DR is the 
size of a divided region, m is the number of transparent objects and n is the mask size. 
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We have implemented the occlusion culling and non-refractive 

transparency rendering for experimental testing and practical application. 

In order to analyze and illustrate the performance of these algorithms, we 

use a simple walkthrough system as a test platform for the MOS and the 

occlusion culling algorithms. Moreover, we apply the occlusion culling 

algorithm to the application “Virtual Brain”. However, as Virtual Brain 

setup a dynamic environment, so we bypass the implementation of MOS 

algorithm. For the tabular pixel mask generation, we use a set of 

randomized test data for comparison first, and also give a practical result 

from Virtual Brain. Table 4 shows the summary of the experiments and 

applications for the three algorithms. 

 
 Experiments Application

s 
Occlusion culling 

MOS algorithm rough system – outdoor city -- Walkth
scene 

Occlusion culling  rough system – outdoor city 
 

 
Brain 

Walkth
scene

Virtual

Non ncy rende-refractive transpare ring 
Tabular Pixel Mask Random test data  

Brain Generation 
Virtual

Table 4: Summary of the experiments and 

5.1 Experimental Result 
applications. 

5.1.1 Occlusion Culling on A Walkthrough System 
We have implemented the MOS and occlusion culling algorithms on a 

simple walkthrough system, which uses OpenGL and runs on an SGI 

Indigo2 Max IMPACT workstation with R10000 CPU (195MHz) and 192 

MB RAM. In this section, we demonstrate the performance of the 

minimum occluder set algorithm and occlusion culling using the opacity 
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 and no texture. A birdeye view of the test model is shown in 

Figure 26.  

and culling percentage, 

arying the maximum number of occluders used. 

 

Figure 14: Frame rate and culling percentage of different occluder selection methods. PS 
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5.1.1.1 MOS Algorithm 
In the following tests, we compare the performances of different occluder 

selection criteria. They are the projected size, MOS, and first-hit. The 

experiment is carried out at a certain viewpoint that gives about 400 

visible primitives in 512×512 resolution. For the criterion of projected size, 

we simply pick occluders in the descending order. For the first-hit criterion, 

we first find all the visible primitives, and count the number of pixels 

covered by these primitives. Afterwards, we choose the occluders in the 

descending order. We record the frame rate 
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stands for the criterion of projected size, FH stands for the criterion of first-hit. 

Figure 14 shows that the MOS algorithm needs 192 occluders to achieve 

the optimal culling percentage, about 94%. The criterion of first-hit uses 

about 384 occluders to reach the same culling percentage. The projected 

size criterion has about 93% culling with 512 occluders. The culling 

percentage of the projected size criterion has the slowest growth rate. Also, 

stands for the criterion of projected size, FH stands for the criterion of first-hit. 

Figure 14 shows that the MOS algorithm needs 192 occluders to achieve 

the optimal culling percentage, about 94%. The criterion of first-hit uses 

about 384 occluders to reach the same culling percentage. The projected 

size criterion has about 93% culling with 512 occluders. The culling 

percentage of the projected size criterion has the slowest growth rate. Also, 
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more occluders are used, more computation overhead is introduced for 

occlusion culling, thus decreasing the frame rate shown in the tail part of 

the curve. The MOS algorithm uses a half of occluders as by the first-hit 

criterion to yield the optimal culling percentage, as it considers the 

combined gain and redundancy of primitives. These points are illustrated 

in Figure 15, which shows the top view of the whole model. The light grey 

boxes are nodes outside the view frustum, and the dark grey boxes are 

culled by the occluders. These are the results when 192 occluders are used. 

Except in the MOS algorithm, the incomplete coverage caused by other 

two methods reduces the culling percentage, while the redundancy of 

ccluders leads to increased overhead without improving culling ratio. 

 

e culled by occluders and the black boxes are conservatively visible. From the 
left to right, the figures show the cases (a) projected size, (b) MOS and (c) ) first-hit criteria 
respectively. 

nd group shows performances and 

located with different depth complexities, and classified as best, average 

o

 

 

 

 

 

Figure 15: The top view of model. The light grey boxes are outside the view frustum, the dark 
grey boxes ar

(a) (b) (c) 

5.1.1.2 Occlusion Culling 
We have conducted two groups of tests for the occlusion culling. The first 

group is aimed to illustrate the speedup of occlusion culling with different 

depth complexities; and the seco

bottleneck at different resolutions.  

Tests at Different Routes: The following three tests are carried out with 

the same Chicago model, but alone different routes. The three routes are 
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and worst cases for the speedup. The tests use 64 occluders and have 

512×512 resolution. The three routes have 120 frames each. 

For the best case, the route starts at the lower left corner of the 

environment, and heads towards the center part. It has the highest depth 

complexity. The speedup of occlusion culling to view frustum is 14.6 and 

the average frame rate is 25.5. For the average case, the route is located at 

the center of the environment, the depth complexity is medium. It has the 

speedup of 4.4 and average frame rate of 26.7. For the worst case, the 

route is set at the upper right corner of the environment, with the viewer 

looking outwards. It has lowest depth complexity, and the speedup and 

average frame rate are 0.7 and 34.6, respectively. For reference, the frame 

rate of occlusion culling with pixel-wise comparison is also shown in 

Figure 16. It has the average frame rate of 17.7, 19.4 and 28.8 for the 

three routes, respectively. 

According to Figure 16, the occlusion culling has adverse effect on the 

frame rate in the worst case. That is because the computation cost of view 

frustum culling is lower than occlusion culling. If the environment has low 

depth complexity, occlusion culling causes overhead instead of profit to 

culling percentage.  

Figure 17 shows the performance of occlusion culling using different 

occluder selection criteria for the best case route. The average frame rates 

for projected size and first-hit criteria are 5.4 and 24.5, relatively. The 

difference between MOS and first-hit criteria decreases gradually in the 

first twenty frames, and their performances are similar in the remaining 

frames. That is because the routes do not have too much visible primitives, 

so the superset of occluders (first-hit ones) converges to the optimal set 

after the first twenty frames. 

 
Tests at Different Resolutions: The performance of occlusion culling 

using the opacity map is shown in Figure 18. The test is based on the best 
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case route, using MOS. The two figures show the results of view frustum 

culling and occlusion culling at resolutions of 512×512, 768×768 and 

1024×1024. The average frame rates are 25.6, 20.1 and 16.7 of the three 

ascending resolutions. As the sizes of opacity map and sparse depth map 

applied for the three resolutions are the same, their culling percentages 

are constant. It is regarded as no change for the geometric computation. 

The drop in frame rate is caused by the rasterization of hardware 

rendering process, which is also the bottleneck of walkthrough system now. 

Although the frame rates of 768×768 and 1024×1024 resolutions are lower, 

we still have a speedup of 9.8 and 11.6 respectively. 
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Figure 16: Performances of occlusion culling with different routes. Nil represents that no 
culling is applied. VF represents that view frustum culling is applied. OM represents that 
occlusion culling with opacity map and sparse depth map is applied. PC means occlusion 
culling with pixel-wise comparison. 
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culling is applied. VF represents that view frustum culling is applied. OM represents that 
occlusion culling with opacity map and sparse depth map is applied. PC means occlusion 
culling with pixel-wise comparison. 
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Figure 17: Performances of occlusion culling with different occluder selection criteria for the 
best case route. PS, MOS and FH represent the criteria of projected-size, minimum occluder 
set and first-hit, respectively.  
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Figure 18: (a) Performances of occlusion culling using opacity map and MOS algorithm at 
different resolutions, 512×512, 768×768 and 1024×1024, (b) The result of view frustum. 
Figure 18: (a) Performances of occlusion culling using opacity map and MOS algorithm at 
different resolutions, 512×512, 768×768 and 1024×1024, (b) The result of view frustum. 
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5.1.2 Tabular Pixel Mask Generation with Random Test Data 
Two test cases are conducted, for comparing the accuracies of white noise 

mask, tabular pixel mask with and without neighborhood error 

compensation. The first test case uses 16×16 sized masks for 16 

transparent objects, and the second test case uses 32×32 sized mask for 32 

transparent objects. In both cases, each object has a random opacity or 

alpha value, and a depth. They are generated in a randomized order, and 

we make no assumption on the depth or rendering order. We stack the 

masks together one by one, we records the number of faulty pixels at each 

level. The result of first test is shown in Figure 19 and the second one is 

shown in Figure 20.  
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Tabular Pixel Mask
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Figure 19: Results of white noise mask, tabular pixel mask with and without neighborhood 
error compensation for 16×16 sized mask. 
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Figure 20: Results of white noise mask, tabular pixel mask with and without neighborhood 
error compensation for 32×32 sized mask. 

The minimum numbers of faulty pixels are always zero at each level for 

the three methods. However, for the maximum and average number of 

faulty pixels, tabular pixel mask gives a better result, achieving only 1 to 2 

faulty pixels. While the other two masks have similar behaviors, and give 

about 7 faulty pixels for 16×16 sized mask and 27 faulty pixels for 32×32 

sized mask in the worst cases. It is because the mask size of white noise 

mask is not large enough to achieve the correct result by the ground of 

probability. About the tabular pixel mask without neighborhood error 

compensation, the number of transparent objects exceeds the capacity of 

mask, and causes serious violation of binary partitioning. On the other 

hand, the tabular pixel mask method with neighborhood error 

compensation has minimized the violation and provides a better result. 

 
5.2 Application Performance – Virtual Brain 
The occlusion culling algorithm and the tabular pixel mask generation is 

implemented in an application known as “Virtual Brain”. The platform of 

the application is a DELL Precision 410 PC with Intel Pentium II (400 

MHz), 256 MB RAM, and Intergraph Intense 3D 3410GT display card. In 

this section, we demonstrate the performance of occlusion culling and 

visual output of non-refractive transparency by using tabular pixel mask 

generation. 

5.2.1 Occlusion Culling 
We have recorded the timing and culling percentage of 475 frames to show 

the performance of occlusion culling in the “Virtual Brain”.  The camera 

path is simply rotating around the whole brain and skull, and several 

screen snapshots are captured as shown in Figure 21. As the organs of the 

brain and skull are expected to be movable, we use the projected size of 

primitive as the criteria of occluder selection, instead of the MOS 
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algorithm. The view frustum always contains the whole model and view 

frustum culling does not help, so we only consider the cases of occlusion 

culling algorithm and brute force approach. In Figure 20, we draw the 

primitives that are culled in sharp colors, while the other ones are in 

transparent grey. It shows quite a lot of interior primitives are culled. 

According to the Figure 22, we achieve a maximum culling percentage of 

78.6% and frame rate speedup of 3.1 while the total number of polygons is 

207,372. 

 

  

  
 
Figure 21: Screen snapshots of occlusion culling algorithm. The colorful interior primitives are 
detected to be invisible, and culled. 
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Figure 22: Performance of Occlusion Culling algorithm in "Virtual Brain". OC stands for 
Occlusion Culling while NIL stands for brute force approach. 
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Firstly, we show two visual properties of screen door transparency 

rendering, they are order invariant and interior layer masking-off. Second, 

we demonstrate the visual outputs of transparency rendering using alpha 

blending, white noise mask, pixel tree mask and tabular pixel mask. 
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we demonstrate the visual outputs of transparency rendering using alpha 

blending, white noise mask, pixel tree mask and tabular pixel mask. 

Figure 23 illustrates the order invariant property of screen door 

transparency. At the lower right part of both pictures, we have three 

organs; they are red, blue and green in color, following their depth order. 

The red and blue ones are transparent. However, they are rendered in the 

order of green, red and blue. Therefore, in the left picture, we apply the 

general alpha blending without visibility sorting, that cannot illustrate 

the blue organ through the red one. In the red rectangle of right picture, 

we can see that the blue organ is behind the red one and before the green 

one. 

Figure 23 illustrates the order invariant property of screen door 

transparency. At the lower right part of both pictures, we have three 

organs; they are red, blue and green in color, following their depth order. 

The red and blue ones are transparent. However, they are rendered in the 

order of green, red and blue. Therefore, in the left picture, we apply the 

general alpha blending without visibility sorting, that cannot illustrate 

the blue organ through the red one. In the red rectangle of right picture, 

we can see that the blue organ is behind the red one and before the green 

one. 

  
Figure 23: The left picture applies general alpha blending without visibility sorting, thus shows 
an incorrect opacity. The right picture applies screen door transparency and clearly shows 
that the blue organ is between the red and the green ones. 
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Figure 24 shows an additional advantage of screen door transparency. If a 

transparent object contains some interior primitives, which sometimes 

cause confusion of the overall shape and shading. For example, some 

interior primitives are shown in the lower right purple cerebrum of the left 

picture, but they are just confusing the visual appearance of the organ in 

clay yellow. Using pixel mask, we can have a visual output of the 

outermost layer of organs only, which is shown in the red rectangle of the 

right picture. It is because the same object is able to have the same mask, 

that will cover the interior primitives’ mask pixels. 

Figure 24 shows an additional advantage of screen door transparency. If a 

transparent object contains some interior primitives, which sometimes 

cause confusion of the overall shape and shading. For example, some 

interior primitives are shown in the lower right purple cerebrum of the left 

picture, but they are just confusing the visual appearance of the organ in 

clay yellow. Using pixel mask, we can have a visual output of the 

outermost layer of organs only, which is shown in the red rectangle of the 

right picture. It is because the same object is able to have the same mask, 

that will cover the interior primitives’ mask pixels. 

  
Figure 24: The left picture shows some interior primitives that give a confusing visual output, 
while the right one only shows the outermost layer of the organs, and provides a clear 
understanding. 
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In Figure 25, we show the visual outputs of alpha blending with and 

without visibility sorting, white noise mask, pixel tree mask and tabular 

pixel mask. We render 12 transparent objects, with an 8×8 mask for those 

screen door transparency techniques. In Figure 25a, alpha blending 

without visibility sorting is applied, some organs are blended incorrectly, 

or even hidden wholly, since they are not rendered in a far-to-near order. 

In Figure 25b, we use alpha blending with visibility sorting, the picture 

shows the correct visual output. In Figure 25c and Figure 25d, we use 

white noise mask and pixel mask respectively. There are some parts are 

hidden, and we use the red line to highlight the incorrect portion. In 

Figure 25e, we use tabular pixel mask, and the visual output is accurate 

as alpha blending with visibility sorting.  
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(a) alpha blending without visibility sorting (a) alpha blending with visibility sorting 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(c) white noise mask (d) pixel tree mask 
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(e) tabular pixel mask  
Figure 25: Visual outputs of alpha blending with and without visibility sorting, white noise 
mask, pixel tree mask and tabular pixel mask. 
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Traditional neuroanatomy was taught by using cross-section slide of the 

brain, but in recent years many computer based applications have been 

developed. Through the use of computer graphics and virtual reality, the 

students of medicine can have an interactive visualization of three 

dimensional structure of human organs. With the shift in emphasis 

towards a medical curriculum which stresses more important on learning 

through the use of computers, the Department of Pathology recognizes the 

advantage of computerized learning toolkit for anatomy and pathology. 

Therefore, a project “Virtual Brain” co-operated by the Department of 

Pathology, and the Department of Computer Science and Information 

Systems is launched, in order to develop a learning product for medical 

students. 

The developed system supports real-time visualization of the surface-

based data model of human organs on affordable PC platform. The user 

can “walk through” the interior structure of human organs, and thus 

perceives a better understanding of the relationship of different organs. 

Moreover, the user can move, rotate, resize and zoom the organs, so as to 

recognize the geographical and anatomical location. The textual 

information of organ is further provided as a complete reference of medical 

knowledge. 

As the floating-point computational power and 3D graphics API are 

limited on general PC, some advanced speedup techniques have been 

applied to achieve interactive frame rate and transparency effect. The 

development consists mainly of three parts: data modeling, speed-up 

technique and transparency rendering. The aim of data modeling is to 

unify the data file formats, correct the organ positions and orientations, 
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and increase data efficiency. The source data comes in different file 

formats and coordinates system. We standardize their file formats, i.e. 

Virtual Brain Object, (*.vbo). This is a subset of the well known file format, 

WaveFront Object file (*.obj). Also, we modified the source data set so that 

all organs are in the right position and orientation. The overly tessellated 

surface data has been simplified to minimize the requirement of 

computational power. The number of polygons of resultant data set is 

about two hundred thousands. The application is speeded up by our 

occlusion culling algorithm. As an opaque skull usually occludes most of 

the interior tissues from a fixed view point, we can skip to render those 

culled primitives, in order to increase the frame rate. Transparency 

rendering is also important to visualization, as it can reveal the 

relationship between the outer shield and the inner tissues. The screen 

door transparency rendering using tabular pixel mask method is applied, 

since it does not require the visibility sorting., which is favorable to an 

interactive application. Though screen door transparency rendering is still 

under a pilot run and allows a small displaying region, its computational 

load is light enough for interactive visualization. If hardware 

supersampling is provided, its usage will be greatly increased.  

In the coming phrase, the information cue, question module, and other 

usages of the existing infrastructure are the major areas for improvement. 

Our goal is to provide an interactive, user-friendly, and affordable 

visualization system for medical education. Some screen snapshots are 

shown in Figure 27. 
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We have presented an occlusion culling algorithm using the minimum 

occluder set and opacity map, and a non-refractive transparency rendering 

method using the tabular pixel mask generation. 

The occlusion culling algorithm results in significant speedup of the frame 

rate and a reduced number of occluders required. The speedup by 

occlusion culling is due to the use of the opacity map and sparse depth 

map. The opacity map needs only two integer additions and one 

subtraction to do the overlap test. The sparse depth map further simplifies 

depth comparison, by not using pixel-wise comparison. Moreover, the high 

culling percentage is achieved by the MOS algorithm, which takes into 

account the combined gain and redundancy of occluders. The occlusion 

culling algorithm makes no special assumption on occluders and models 

and is suitable for implementation on current graphics systems. 

The tabular pixel mask generation provides a fast, order invariant method 

for non-refractive transparency rendering. It is feasible to apply the screen 

door transparency at sub-pixel level, and gives a comparative accurate 

visual effect by avoiding the violation of binary partitioning among the 

depth neighborhood. 

Further research includes the extension of the MOS algorithm to dynamic 

environments and integration with impostors for scalability. The MOS 

algorithm can be adapted to a dynamic model if the probability of dynamic 

occlusion is considered in the process of scoring. For an outdoor 

environment with a large number of visible primitives, we can apply 

impostors [33, 39] for distant objects. Integration with impostors would 

make a walkthrough system into a semi-image-based VR system. Thus we 

would still have geometric data for nearby objects, which allows collision 
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detection and interaction for the users, and the total number of primitives 

handled by graphics hardware is greatly reduced since distant primitives 

are represented as impostors. 

Also, about the screen door transparency rendering, we would break the 

limitation of frame buffer, by allowing a trade off from the mask size, 

shifting frame buffer requirement to main memory with frequent or 

incremental frame buffer reading, or using dedicated hardware with 

supersampling. 

Furthermore, we would extend the functionality of the application “Virtual 

Brain”, for example, adding the information cue, question module, and 

other usages of the existing infrastructure, so as to provide an interactive, 

user-friendly, and affordable visualization system for medical education. 
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9 Appendix 
9.1 Chicago City Model 

Figure 26: A birdeye view of the test model, which is composed of thirty copies of a Chicago 
city model and contains 300,540 polygons in total. 
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9.2 Virtual Brain Screen Snapshot 

 
 

 

 
 

 

 
 

 

Figure 27: Screen snapshots of "Virtual Brain". The project is ongoing to import the whole 
body! 
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